

## A Novel Turbomachine:

# The Technological Revolution Towards Clean and Sustainable Hydrocarbon Cracking



Dylan Rubini, Prof. Budimir Rosic and COOLBOOK OY

#### Abstract

| Field: Steam cracking of hydrocarbon feedstocks for light olefin production through high-temperature pyrolysis of primarily naphtha feedstock                  | Promising solution: Replacing the radiant section of a conventional plant with a low-volume turbomachine – The Roto-Dynamic Reactor (RDR)                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relevance: Light olefins (ethylene and propylene) are the basic building blocks for numerous indispensable materials and their production is rapidly growing   | Advantages:                                                                                                                                                     |
| <b>Problem:</b> Highly energy intensive (high enthalpy of formation and endothermic reactions), high fossil fuel consumption, and substantial $CO_2$ emissions | • Primary product yield is increased by: lowering the hydrocarbon partial pressure and residence time which minimises secondary reactions                       |
| Specific limitations with conventional technology:                                                                                                             | Mechanical energy transferred directly to the working fluid which maximises the use of the system's exergy                                                      |
| • Limited scope in reducing the residence time and increasing the process temperature due to restrictions of the tube metallurgy and intense thermal           | • Lower thermal gradients and wall temperatures reduces coking and enables higher temperatures. At higher temperatures, the optimum residence                   |
| boundary layers adjacent to the walls (tubular coils much be at a much higher temperature than the working fluid to achieve a good heat transfer rate)         | reduces and the rate of primary product conversion increases at a greater rate than secondary products. This increases the primary product yield                |
| <ul> <li>Long residence times means olefins produced in the early stages undergo secondary reactions which reduces the primary product yield</li> </ul>        | <ul> <li>Significantly reduces fossil fuel consumption and CO<sub>2</sub> emissions</li> </ul>                                                                  |
| <ul> <li>Lack of control of hydrocarbon partial pressure leads to condensation into secondary products and coke (reducing primary product yield)</li> </ul>    | Reduction in the plant size, and lower energy consumption and operating costs per tonne of ethylene                                                             |
| <ul> <li>Decoking occurs fortnightly for 48 h which has a significant impact on the plant operating expenditure</li> </ul>                                     | Controllable: energy input, hydrocarbon partial pressure and mixing of species. This results in a highly selective process                                      |
| Policy: European Council's target of reducing greenhouse gas (GHG) emissions by 80–95 % by 2050 (relative to emissions in 1990)                                | Auxiliary applications: Applicability to any industry where pyrolysis of long-chain hydrocarbons into higher value short-chain molecular structures is required |
| Needed: A clean and sustainable production process that is capable of meeting the large-scale demand but with lower GHG emissions and energy costs             | Objective : The first ever high-fidelity numerical investigation proving the concept's feasability and validating the design requirements                       |

### Deficiencies of conventional steam cracking plant

### **Novel turbomachine: The Roto-Dynamic Reactor**









Cut-away of the Roto-Dynamic Reactor

### Single pass: velocity triangles and energy transformation





| Numerical simulations: energy transformation                                 | Numerical simulations: regenerative heating and mixing                            |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Static and stagnation temperature contours at mid-span (LES)                 | Static temperature and velocity vectors at mid-span in the vaneless space (URANS) |
| High stage loading results in a large     increase in stagnation temperature | Clearly defined regenerative passes<br>(streamtubes)                              |

