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Deep brain stimulation (DBS) is an increasingly adopted form of neurotherapy for brain disorders, a subcategory of
neurological disorders. DBS involves the application of electrical neuromodulation, and works by altering neuronal
activity by electrical impulses sent to targeted regions in the brain nuclei to alleviate symptom:s.

Although DBS is an established method of treatment, some significant limitations remain, notably stim parameter
selection. Stim parameters consist of stimulation variables such as stim amplitude and frequency. Currently, there
is little understanding behind the effect of different stim parameters due to the poorly defined transfer functions
between parameters and their effects. As a result, parameter optimisation involves a clinician manually setting the
parameters post-implantation and then infrequently updating them. This is done through a laborious trial-and-
error random searching of the parameter space which often leads to suboptimal results and side effects.

In order to improve treatment, closed-loop adaptive DBS (aDBS) has been developed where electrical impulses are
delivered only when necessary, by using a feedback biosignal which is correlated with the patient's brain state. The
recent development of aDBS devices and use of feedback provides a basis to support a continuous optimisation
routine. DBS could greatly benefit from an adaptive learning optimisation algorithm which bypasses the current
procedure and many of its associated limitations, ultimately improving treatment. This project focuses on the

The aim of the optimisation algorithm is to find and continuously select the optimal stim parameters in as few trials as possible. With the increasing adoption of
aDBS devices, optimisation routines are made feasible through disease-specific biosignal feedback which can be used to specify a biomarker that correlates with
symptom severity. An objective function can then be formed using this biomarker and be evaluated by using noisy sensor readings. The argument of the objective
function's minimum corresponds to the desired optimal parameter with greatest symptom suppression. However, in order to promptly provide effective symptom
suppression it is important to minimise the number of samples made when finding the function's minimum. BayesOpt overcomes the challenge of hunting
through the vast parameter space when faced with constraints on the search space. This removes the largely heuristic biannual process of manual parameter
reprogramming which in turn lessens the burden and associated patient and clinical costs of regularly needing to go to a clinic for parameter adjustment.

Objective functions are formed using biomarkers which often change over time as they
Hyperplane (t = 0) are extracted from a dynamic neural network environment. This gives rise to a dynamic
optimisation problem where the function has a spatial component, as well as a time
component. In practice, these dynamics are due to gradual changes such as neuroplastic
network reconfigurations and tissue-electrode interface variations, or sudden changes
such as electrode movement and new oscillation emergence. This implies that stim
parameter effects might not remain constant and that previous data points including the
globally optimal parameter might not be fitting anymore. This poses a different question
to that of a time-invariant problem where information is gathered from all the . . Slfg?l‘élsaggazdpfr’};‘f
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To deal with gradually varying dynamic functions, a time-varying GP is implemented to parameter update N DBS device
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response. This allows for rapid optimal parameter choice by efficiently sampling the parameter space. continuous optimal therapeutic delivery. This is done using a spatiotemporal kernel ! to find next sample algorithm » embedded detector

To be clinically viable, the algorithm should meet several requirements: Previous” | \’ ,‘ following a simple Markov model with a forgetting factor which places a weighting on ' :

1. Generalisable to any disease and biomarker, allowing it to be expanded to a number of neurotherapies. samples \\‘ | | ~ Future  the relevance of each sample based on the time they were acquired. As a result, older
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Hardware agnostic and universally compatible with any DBS or bioelectronic stimulator. | | (feasible region) / stale data is deemed irrelevant and discarded, thus leading to a smooth forgetting effect.
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: , : . . / For rapid changes, a sudden change detection scheme is introduced, a statistical process | phase
Adjustable to the patient's needs for tailored treatment, such as the explorative or exploitative balance. | —_— > : . g :
J P ’ P P Time (t) control (SPC) x and R chart. SPC is particularly advantageous as it focuses on early

Gradually time-varying objective function. The past region displays the  change detection and problem prevention by providing a robust framework to Bayesian optimisation and stimulator control flow. BayesOpt loop is the externally run  Bayesian optimisation flow for aDBS device parameter selection. The biosignal can be any
pI"EVIOUSIy GCCIUII’Ed Samp/es, the darker central region and hyperplane dlStIﬂgUlSh between expected common cause variations (I’andom, natural and intrinsic algorithm which explores and selects stim parameters. The C/OSE’d'IOOp stimulator Signa| that correlates well with the paﬁent's state, such as Speciﬁc bandwidth power from
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B rain D 1ISO rd ers & Dee p B rain Su nmu Iah on ’”L’Stm;esdthj C“r_remffsf’s’ble O:JEC“VZfU”CZO”' finally the lightly variation such as sensor noise) and special cause variations (non-random variation component can function as a standalone aDBS device. LFP, EEG, ECOG signals from sensor electrodes.
A e e shaded region indicates the unobserved future region. stemming from external changes). If special cause variations are detected (moving range The BayesOpt algorithm proposed is implemented in Python using scikit-learn and
s or process average falls outside of the required bounds), the process is deemed to be skopt packages and can be deployed in conjunction with any aDBS device.
i Biorhythms such as the circadian rhythm also have a out of statistical control and the algorithm's re-exploration function is triggered. However, a supporting architecture is needed in order to facilitate BayesOpt in a
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significant effect on the stim response of a patient as it —= Subgroup 7 b) clinical setting, in particular, two crucial components are required to deploy it. Sensors
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between the DBS device and external computer, thus allowing the user to send via API

and receive objective data. On the transmitting end, optimised stim parameters Classifiers &

_ are pushed remotely to the DBS device. The resulting sensor and classification Cemarel L ..
—e— Subgroup x Classifier &

Furthermore, the treatment for brain disorders | gossper the algorithm to support the effects of chronobiology. | A = s L, f:lata are then .returned W|re_lessly.to the clinician's PC. This remote access Sti(rlnparamzt[gell:
. interfaces the implanted device with the code and allows the user to test . Lplelase

are still at a very primitive stage and end up subject ' By including more sophisticated spatiotemporal GP E . . . . o .

being costly due to the complexity of the (EUros) = z100 2697 s 4200 2000 5221 me0s s 4227 3aos 30 kernels, more complex dynamics such as biorhythms 5 experimental routines by facilitating flexible algorithmic prototyping. Second, a Actuation physics
oroblem at hand. In 2010, in Europe alone,  Totalcosts B | , can be captured. This extra information in the prior e | T classifier is ngeded to support the algorlthm by mapping biomarker readings into
brain disorders made up a total healthcare cost (ME"l'jir"O":) ™ would enable the device to track physiological time- [[SS B L state categories ar\d kegp traFk of patholog|caloevents. These .classes_can then. be
of €800 billion and directly impacted almost a - M B e B b based cyclic behaviour and improve parameter ' us_ed as an actuation trigger in the C?f‘t“" policy and fjgtermlne which real-time
quarter of Europeans [1]. Economic impact of brain disorders in Europe, 2010. [1] selection suitability by having multiple optimal control St_-'m setl:'mg should be selec’_ced. Addltlonal.ly, the c!as_snﬁer and data Iog.gat'her 4 extraction before being classified. This data is then transmitted to the clinician PC for
policies throughout the day. This is done through the virtual d_lary| of states and episodes of a patient to a'q in the remote monitoring of storage and post-processing to update the optimization algorithm. The algorithm
addition of a periodic temporal GP kernel, where the patient's progress. These components comprise the fundamental blocks  then telemeters optimized feedback actuation parameters to the implantable device.
sample weighting is no longer just based on the age of needed to build a tech stack for successful practical translation.

the sample but also on what its phase in the cycle was

means that throughout the day, the objective function
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healthcare system. Neurological disorders are and consequently the optimal stimulation paradigm
at the forefront of research as major progress is - m B vary with a 24 hour time period. The quality of
needed to provide more eﬁecﬁve treatment. Brain Multiple Parkinson’s Traumatic Stroke  Epilepsy Psychotic Dementia Addiction  Mood Migraine  Anxiety neurotherapy Could be greatly enhanced by upgrading
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Many brain disorders can be 'treated' using DBS, which consists of a neurostimulator that produces electrical
impulses and delivers them to specified areas of the brain using electrodes. However, there is still a lack of
fundamental understanding of the mechanism of action of DBS and the effects of the different stim parameters.

Stim parameters can be varied to control to what extent neuronal elements surrounding the electrode are H btained. | h g | h
recruited and activated. However, it is not entirely evident which regions of the surrounding area are being [l When obtained. In other words, samples that are  spcixand R chart for BayesOpt sample monitoring examples. The upper and lower control limits (UCL and LCL)

stimulated or blocked. As a result, unreliable past empirical and theoretical results are the only guidance clinicians collected at similar points in the cycle will have greater  provide a stability threshold of the system. a) The average rises above the UCL, for the 20" subgroup indicating a
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implanted patients, as each and every patient needs to have a unique set of parameters. Overall, there are many collected at vastly difterent stages In the cycle are g P ' P g / group 2% group | — A):t =200

) . : : : : considered unrepresentative of the system. is within bounds and appears to be reasonable, however the sample range is considerably greater than expected. Objective functions tend not to be static as the brain is a dynamic system and the tissue response to stim
drawbacks to this empirical method of parameter selection, such as suboptimal settings and side effects. . . . N o
[1] DiLuca, M., & Olesen, J. (2014). The cost of brain diseases: a burden or a challenge?. Neuron, 82(6), 1205-1208. parameters can vary over time due to inherent changes such as neuroplasticity. The complication of said time-
varying objective functions is tackled using the Kuramoto model, a mathematical model used to describe
. . o . . ’ . systems that self organise and exhibit collective synchronisation. In particular, it can be used to examine
Bayes I a n O p'tl m Isa'tl o n Pa rkl n SO n S D I Sea Se Stu dy BGTC§ model configurc.tt'io.n._ Black arrows represeqtexcitatory rhythmic activity in large oscillator populations and describe the self organising behaviour behind sets of
connections, red arrows inhibitory ones. Stim is applied to the STN coupled oscillators, including the feedback loop between inhibitory and excitatory neurotransmitters in large
Bayesian optimisation (BayesOpt) is a global optimisation strategy and is Parkinson's disease (PD) is a common DBS application, PD symptoms manifest in a number of ways, including tremor, bradykinesia, ~ 9nd the resulting LFP is measured from the GPi. Adapted from [2]. neuronal networks. Excitatory oscillators want to conform and stay in phase, whereas inhibitory oscillators
particularly useful for expensive-to-evaluate black box functions with no postural instability and rigidity. In study, the STN is chosen as the stim target and LFP B-band (8-35 Hz) power measured from the want to remain out of phase. This concept of inhibition and excitation often comes up when trying to
functional form known a priori. BayesOpt efficiently finds extrema by GPi is used as the biomarker with the goal of minimisation, as LFP B power is correlated with symptom severity. A computational Cerebral cortex understand the driving force behind oscillations present in brain disorders, such as the dominating B oscillation . , , , , , ,
minimising a given objective function through a systematic probabilistic search model of a basal ganglia-thalamocortical system (BGTCS) made up of nine neuronal populations is used in this study. As this is a in PD. In healthy patients, STN neurons spike in an uncorrelated and desynchronised way whereas in PD, STN o e eeaooariizl
utilising Bayes' theorem. BayesOpt maintains a posterior distribution of the mean-field model where neuronal populations are spatially averaged, values extracted from the populations can be interpreted as ] . e neurons form clusters of periodic and synchronous behaviour leading to tremors. Time evolution of dynamic surrogate function. The
objective function as samples are made, and thus acts as a running learning LFP signals and strongly resemble the measurements that can be sensed in practice. As for the stimulation policy, a combined B | . < deploved d thi del usi biective function that ated i " surrogate function mean values and 95% confidence
algorithm. BayesOpt is an iterative process described as follows: power and phase based strategy is used where the power and phase are extracted from the LFP measurement. In this approach, | ‘ ! i : Be-lyesOpt IS dep oye. aroun t. 'S mode .usmg an O_ Je.Ct'V(? unction that Is correlated to OSC_' atont synchrony bounds are shown at times t = 10, 100 and 200.
1. Estimate the true objective function by building a probabilistic surrogate stimulation is applied when the B power is above a set threshold, and is delivered in the form of phase-locked pulses when the Wlth g.radually changm_g dynarmics. aDBS 's used again in this gxa!mp.le, howevgr onIy_phase trigger Is used.and
: : . o , , o L , optimised. The numerical performance is compared for a optimisation strategies. It is apparent that the time- : :
model using a Gaussian process (GP). phase of the beta oscillation crosses a specified point. In this study, three parameters are optimised: oscillation phase trigger, — Time-varying GP

. o — : : : : . : . ; varying GP greatly outperforms a standard time-invariant GP as it is able to discard misleading old data. The 4 —— Time-invariant GP
Determine where to sample next by optimising an acquisition function. power threshold and stim amplitude. These free variables are optimally found in an efficient automated manner using BayesOpt. timé-ir%variait GPystartE o well with a low reret in the early iterations. however as the d narr%ics hanae the  Random sampling
Sample this point and update the surrogate model. — - . A : . g Y , Y g

Repeat steps until the global minimum is found or resources are exhausted. Vessured 55 sign O model performance diminishes rapidly due to the stale data still contributing to the prediction. As time

' . /\/\/\/\ﬁ\f\/\/\/\k/\/\/\/‘ Extract B power from pove chers S progresses, the time-invariant GP's performance is only slightly better than a random sampling strategy due to
25 B ) + \3_960* 4 - swisamls prev'ousobservatloq‘ o e power not provided the large amount of unrepresentative data present in the model. These results confirm that a time-varying
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. kernel is effective at dealing with dynamic systems with performance vastly exceeding standard techniques.
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2 H+(x) - 1.960- Does LFP B | il One key assumption in the time-varying model is that the objective function varies at a constant rate according
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not provided the phase LEP:gnaliusing : , 5 5 1 3 3 3 to a simple Markov model. In practice, objective functions often follows underlying periodic rhythms such as
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e Posecisod@d) . SNOTRETR) the 24 hour circadian rhythm. To account for this, a periodic temporal GP is included in the model. To verify
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42 the utility of this solution, the system dynamics are periodically varied with a time period of 24 h to represent

Surrogate model estimates of the biomarker value as a function o . . . . ) . ' . ; . : '
urrog ) f fomarier vaiue as Ju / the effect of a circadian rhythm commonly found in brain disorders. The optimal parameter is evaluated at 600 0 40 80 120 160 200
aDBS parameters using 1D BayesOpt. Individual Bayesian parameter Time (t)

aDBS combined 8 power and phase based stim feedback policy. This decision optimisation for B oscillation phase trigger, 6 power threshold, and time increments and plotted ag.ain-st time f)ver 2 cycles. When comparing the .algf)rithm S performanc_e to Average regret (R,/t) of BayesOpt dynamic search: time-
tree diagram illustrates the key steps of the control process: the LFP signal is -18 stimulation amplitude. The black line represents the GP posterior other BayesOpt models, the periodic-forgetting strategy proves to be more effective in tracking the function's varying GP, time-invariant GP, random sampling.
measured using an electrode sensor from which 8 power and phase are 20 | mean, the green shaded region illustrates the 95% confidence interval. minimum, as highlighted when comparing the average regret of the routine using the three different methods.

f(x) (blue dashed line). The purple shaded region indicates the posterior uncertainty of the _
calculated using an aSwift algorithm. Stimulation is then only provided if both 221 - . - | The points represent the 15 total samples made, where the colour

surrogate model (95% confidence region) and the black line depicts the posterior mean, . hreshold and oh (dashed red lines) ndicates the fterati ber of th i : 1 : : : 1 1 1 l -
. - s o . the power threshold an ase trigger (dashed red lines) criteria are met. Phase Trigger (rad) Indicates the iteration number oj the sampie. : : eo... —— Periodic-forgetting GP .
both determined through GP Regression. On the bottom row, the acquisition function p p 99 ] X ; ‘ Fs:;oetltcin:rgs B8 Conclusion

determines which x value to sample next for best utility depicted by a red star. These parameters are optimised one at a time whilst the other two parameters are kept constant at their 'optimal’ | % 3 3 (  Time.invariant GP
values. As illustrated, the algorithm is efficient at finding the minimum of the objective function in very few iterations. - o3

This project proposes a sequential parameter optimisation algorithm for he aleorith € ori h before honing 4 oiti He mini found. Th s d a)
. . . . . . . . —e— Halton sequence —e— Halton sequence
finding the extrema of objective functions using BayesOpt. By defining The algorithm starts off exploring the space before honing in and exploiting the minimum found. The samples do not |~ Halton sequenc | =9~ Halion secuienc

appropriate objective functions, BayesOpt can be implemented to find and necessarily lay on the surrogate function as noise is included during sample procurement to ensure noise robustness —e— Grid search =G soarch
’ . . . . . .. . . . 1 —e— Bayes —e— BayesOpt

select optimal parameters for maximum therapeutic benefit. This method is of the routine, as samples will be inherently noisy when implemented clinically. Even when testing the algorithm with i —

exceptionally effective when optimising costly black-box functions with large amounts of noise, the optimiser is able to factor this in and consistently find the minimum point of the function.

unknown functional form, as is the case for most brain disorders. BayesOpt is Now that a robust optimisation program has been created, one might think how beneficial BayesOpt actually is in . _ :

chosen as it is effective and meets all the requirements set out: it is comparison to simpler methods. Four different search strategies are compared in terms of convergence and regret only greatly improves the device longevity and performance but
. . . . . . .. ) . .. : . % also has the potential to drastically improve the quality of life of a

computationally efficient; it does not require expressions for the objective (f(x) - fmin) Which are both good quantitative indicators of optimiser performance. The other three searches tested are: : | & o Ky . patient. The algorithm's hyperparameters are all tunable and

function or its derivatives; it reliably converges to the global minimum as random search; grid search, which generates a uniform grid from which points are tested; and Halton sequence, I T | S S ——————— 5 & © 1 4 % 3% @ 4« |optimisable to provide maximum symptom suppression. The
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opposed to local minima, even for non-convex and non-smooth functions. which is a low-discrepancy point generation method. BayesOpt vastly outperforms the other methods as it has the a) Cumulative re";reft;nd b) convergence plots for dmceren”;”‘s"zg;‘“’;’; strategies _ _ Time (t) Time (t) o objectives initially laid out have all been met and in most cases
smallest total regret as well as the fastest convergence. This means optimal therapy can be derived and delivered ' Optimal phase trigger determined for 600 BayesOpt Average regret (R,/t) of BayesOpt periodic search: | exceeded through added functionality and levels of robustness.

i . ) ) iterations with periodic-forgetting spatiotemporal kernel. eriodic-forgetting, forgetting, and time-invariant GPs. \\ /
faster leading to better treatment and an overall more productive parameter selection routine. P forgetting sp P P forgetting, forgetting
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The presented algorithm provides a flexible clinical framework for
stimulation parameter optimisation and has the capability of
continuously and autonomously calibrating DBS devices for
optimal therapeutic delivery. Furthermore, the algorithm is able
to determine and track the optimal DBS control policy allowing
for effective treatment of dynamic and periodic brain disorders.
By using continuous biofeedback, the control loop is never broken
thus ensuring optimal symptom suppression and therapy. This not
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