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Bayesian Op+misa+on
Bayesian op*misa*on (BayesOpt) is a global op*misa*on strategy and is
par*cularly useful for expensive-to-evaluate black box func*ons with no
func*onal form known a priori. BayesOpt efficiently finds extrema by
minimising a given objec*ve func*on through a systema*c probabilis*c search
u*lising Bayes' theorem. BayesOpt maintains a posterior distribu*on of the
objec*ve func*on as samples are made, and thus acts as a running learning
algorithm. BayesOpt is an itera*ve process described as follows:
1. Es*mate the true objec*ve func*on by building a probabilis*c surrogate

model using a Gaussian process (GP).
2. Determine where to sample next by op*mising an acquisi*on func*on.
3. Sample this point and update the surrogate model.
4. Repeat steps un*l the global minimum is found or resources are exhausted.

This project proposes a sequen*al parameter op*misa*on algorithm for
finding the extrema of objec*ve func*ons using BayesOpt. By defining
appropriate objec*ve func*ons, BayesOpt can be implemented to find and
select op*mal parameters for maximum therapeu*c benefit. This method is
excep*onally effec*ve when op*mising costly black-box func*ons with
unknown func*onal form, as is the case for most brain disorders. BayesOpt is
chosen as it is effec*ve and meets all the requirements set out: it is
computa*onally efficient; it does not require expressions for the objec*ve
func*on or its deriva*ves; it reliably converges to the global minimum as
opposed to local minima, even for non-convex and non-smooth func*ons.

BayesOpt for a 1D problem. On the top row, GP es9ma9on of the true objec9ve func9on 
f(x) (blue dashed line). The purple shaded region indicates the posterior uncertainty of the 
surrogate model (95% confidence region) and the black line depicts the posterior mean, 

both determined through GP Regression. On the boKom row, the acquisi9on func9on 
determines which x value to sample next for best u9lity depicted by a red star.

Clinical Implementation
The aim of the optimisation algorithm is to find and continuously select the optimal stim parameters in as few trials as possible. With the increasing adoption of
aDBS devices, optimisation routines are made feasible through disease-specific biosignal feedback which can be used to specify a biomarker that correlates with
symptom severity. An objective function can then be formed using this biomarker and be evaluated by using noisy sensor readings. The argument of the objective
function's minimum corresponds to the desired optimal parameter with greatest symptom suppression. However, in order to promptly provide effective symptom
suppression it is important to minimise the number of samples made when finding the function's minimum. BayesOpt overcomes the challenge of hunting
through the vast parameter space when faced with constraints on the search space. This removes the largely heuristic biannual process of manual parameter
reprogramming which in turn lessens the burden and associated patient and clinical costs of regularly needing to go to a clinic for parameter adjustment.

Bayesian op9misa9on and s9mulator control flow. BayesOpt loop is the externally run 
algorithm which explores and selects s9m parameters. The closed-loop s9mulator 

component can func9on as a standalone aDBS device. 

Technology stack for clinical implementa9on of Bayesian op9misa9on. Biosignals are 
sensed at the material interface and pre-processed through biomarker and feature 

extrac9on before being classified. This data is then transmiKed to the clinician PC for 
storage and post-processing to update the op9miza9on algorithm. The algorithm 

then telemeters op9mized feedback actua9on parameters to the implantable device.

Bayesian op+misa+on flow for aDBS device parameter selec+on. The biosignal can be any 
signal that correlates well with the pa+ent's state, such as specific bandwidth power from 

LFP, EEG, ECoG signals from sensor electrodes.
The BayesOpt algorithm proposed is implemented in Python using scikit-learn and
skopt packages and can be deployed in conjunc*on with any aDBS device.
However, a suppor*ng architecture is needed in order to facilitate BayesOpt in a
clinical seVng, in par*cular, two crucial components are required to deploy it.
First, an API is needed to provide remote connec*vity and enable data relay
between the DBS device and external computer, thus allowing the user to send
and receive objec*ve data. On the transmiVng end, op*mised s*m parameters
are pushed remotely to the DBS device. The resul*ng sensor and classifica*on
data are then returned wirelessly to the clinician's PC. This remote access
interfaces the implanted device with the code and allows the user to test
experimental rou*nes by facilita*ng flexible algorithmic prototyping. Second, a
classifier is needed to support the algorithm by mapping biomarker readings into
state categories and keep track of pathological events. These classes can then be
used as an actua*on trigger in the control policy and determine which real-*me
s*m seVng should be selected. Addi*onally, the classifier and data log gather a
virtual diary of states and episodes of a pa*ent to aid in the remote monitoring of
the pa*ent's progress. These components comprise the fundamental blocks
needed to build a tech stack for successful prac*cal transla*on.

Dynamics & Periodicity of Brain Disorders

Gradually 9me-varying objec9ve func9on. The past region displays the 
previously acquired samples, the darker central region and hyperplane 

illustrates the current feasible objec9ve func9on, finally the lightly 
shaded region indicates the unobserved future region.

SPC x̅ and R chart for BayesOpt sample monitoring examples. The upper and lower control limits (UCL and LCL) 
provide a stability threshold of the system. a) The average rises above the UCLx for the 20th subgroup indica9ng a 
significant change in the process and sub-par symptom suppression. The R chart does not indicate any irregular 

changes in sta9s9cal dispersion. b) Sample noise is greatly increased for subgroup 20. The subgroup's mean value 
is within bounds and appears to be reasonable, however the sample range is considerably greater than expected.

Objec*ve func*ons are formed using biomarkers which o[en change over *me as they
are extracted from a dynamic neural network environment. This gives rise to a dynamic
op*misa*on problem where the func*on has a spa*al component, as well as a *me
component. In prac*ce, these dynamics are due to gradual changes such as neuroplas*c
network reconfigura*ons and *ssue-electrode interface varia*ons, or sudden changes
such as electrode movement and new oscilla*on emergence. This implies that s*m
parameter effects might not remain constant and that previous data points including the
globally op*mal parameter might not be fiVng anymore. This poses a different ques*on
to that of a *me-invariant problem where informa*on is gathered from all the
evalua*ons made in order to guide the search. Instead, in a dynamic op*misa*on
problem the algorithm has two goals, firstly to find the minimum of the func*on, and
secondly to track its development through *me.

To deal with gradually varying dynamic func*ons, a *me-varying GP is implemented to
track the objec*ve func*on's minimum through the solu*on space and ensure
con*nuous op*mal therapeu*c delivery. This is done using a spa*otemporal kernel
following a simple Markov model with a forgeVng factor which places a weigh*ng on
the relevance of each sample based on the *me they were acquired. As a result, older
stale data is deemed irrelevant and discarded, thus leading to a smooth forgeVng effect.

For rapid changes, a sudden change detec*on scheme is introduced, a sta*s*cal process
control (SPC) x̅ and R chart. SPC is par*cularly advantageous as it focuses on early
change detec*on and problem preven*on by providing a robust framework to
dis*nguish between expected common cause varia*ons (random, natural and intrinsic
varia*on such as sensor noise) and special cause varia*ons (non-random varia*on
stemming from external changes). If special cause varia*ons are detected (moving range
or process average falls outside of the required bounds), the process is deemed to be
out of sta*s*cal control and the algorithm's re-explora*on func*on is triggered.Biorhythms such as the circadian rhythm also have a

significant effect on the s*m response of a pa*ent as it
means that throughout the day, the objec*ve func*on
and consequently the op*mal s*mula*on paradigm
vary with a 24 hour *me period. The quality of
neurotherapy could be greatly enhanced by upgrading
the algorithm to support the effects of chronobiology.
By including more sophis*cated spa*otemporal GP
kernels, more complex dynamics such as biorhythms
can be captured. This extra informa*on in the prior
would enable the device to track physiological *me-
based cyclic behaviour and improve parameter
selec*on suitability by having mul*ple op*mal control
policies throughout the day. This is done through the
addi*on of a periodic temporal GP kernel, where
sample weigh*ng is no longer just based on the age of
the sample but also on what its phase in the cycle was
when obtained. In other words, samples that are
collected at similar points in the cycle will have greater
impact on the current predic*on, whereas samples
collected at vastly different stages in the cycle are
considered unrepresenta*ve of the system.

Mo+va+on & Objec+ves
Deep brain s*mula*on (DBS) is an increasingly adopted form of neurotherapy for brain disorders, a subcategory of
neurological disorders. DBS involves the applica*on of electrical neuromodula*on, and works by altering neuronal
ac*vity by electrical impulses sent to targeted regions in the brain nuclei to alleviate symptoms.
Although DBS is an established method of treatment, some significant limita*ons remain, notably s*m parameter
selec*on. S*m parameters consist of s*mula*on variables such as s*m amplitude and frequency. Currently, there
is li]le understanding behind the effect of different s*m parameters due to the poorly defined transfer func*ons
between parameters and their effects. As a result, parameter op*misa*on involves a clinician manually seVng the
parameters post-implanta*on and then infrequently upda*ng them. This is done through a laborious trial-and-
error random searching of the parameter space which o[en leads to subop*mal results and side effects.
In order to improve treatment, closed-loop adap*ve DBS (aDBS) has been developed where electrical impulses are
delivered only when necessary, by using a feedback biosignal which is correlated with the pa*ent's brain state. The
recent development of aDBS devices and use of feedback provides a basis to support a con*nuous op*misa*on
rou*ne. DBS could greatly benefit from an adap*ve learning op*misa*on algorithm which bypasses the current
procedure and many of its associated limita*ons, ul*mately improving treatment. This project focuses on the
development of an automa*c algorithm that op*mises s*m parameters according to their effects on the observed
response. This allows for rapid op*mal parameter choice by efficiently sampling the parameter space.
To be clinically viable, the algorithm should meet several requirements:
1. Generalisable to any disease and biomarker, allowing it to be expanded to a number of neurotherapies.
2. Hardware agnos*c and universally compa*ble with any DBS or bioelectronic s*mulator.
3. Reliably finds the true global extrema of an objec*ve func*on even if it is a *me-varying func*on.
4. Adjustable to the pa*ent's needs for tailored treatment, such as the explora*ve or exploita*ve balance.

Kuramoto Model Study

Time evolu9on of dynamic surrogate func9on. The 
surrogate func9on mean values and 95% confidence 

bounds are shown at 9mes t = 10, 100 and 200.

Average regret (Rt/t) of BayesOpt dynamic search: 9me-
varying GP, 9me-invariant GP, random sampling.

Op9mal phase trigger determined for 600 BayesOpt 
itera9ons with periodic-forge]ng spa9otemporal kernel.

Average regret (Rt/t) of BayesOpt periodic search: 
periodic-forge]ng, forge]ng, and 9me-invariant GPs.

Objec*ve func*ons tend not to be sta*c as the brain is a dynamic system and the *ssue response to s*m
parameters can vary over *me due to inherent changes such as neuroplas*city. The complica*on of said *me-
varying objec*ve func*ons is tackled using the Kuramoto model, a mathema*cal model used to describe
systems that self organise and exhibit collec*ve synchronisa*on. In par*cular, it can be used to examine
rhythmic ac*vity in large oscillator popula*ons and describe the self organising behaviour behind sets of
coupled oscillators, including the feedback loop between inhibitory and excitatory neurotransmi]ers in large
neuronal networks. Excitatory oscillators want to conform and stay in phase, whereas inhibitory oscillators
want to remain out of phase. This concept of inhibi*on and excita*on o[en comes up when trying to
understand the driving force behind oscilla*ons present in brain disorders, such as the domina*ng β oscilla*on
in PD. In healthy pa*ents, STN neurons spike in an uncorrelated and desynchronised way whereas in PD, STN
neurons form clusters of periodic and synchronous behaviour leading to tremors.

BayesOpt is deployed around this model using an objec*ve func*on that is correlated to oscillator synchrony
with gradually changing dynamics. aDBS is used again in this example, however only phase trigger is used and
op*mised. The numerical performance is compared for a op*misa*on strategies. It is apparent that the *me-
varying GP greatly outperforms a standard *me-invariant GP as it is able to discard misleading old data. The
*me-invariant GP starts off well with a low regret in the early itera*ons, however as the dynamics change the
model performance diminishes rapidly due to the stale data s*ll contribu*ng to the predic*on. As *me
progresses, the *me-invariant GP's performance is only slightly be]er than a random sampling strategy due to
the large amount of unrepresenta*ve data present in the model. These results confirm that a *me-varying
kernel is effec*ve at dealing with dynamic systems with performance vastly exceeding standard techniques.

One key assump*on in the *me-varying model is that the objec*ve func*on varies at a constant rate according
to a simple Markov model. In prac*ce, objec*ve func*ons o[en follows underlying periodic rhythms such as
the 24 hour circadian rhythm. To account for this, a periodic temporal GP is included in the model. To verify
the u*lity of this solu*on, the system dynamics are periodically varied with a *me period of 24 h to represent
the effect of a circadian rhythm commonly found in brain disorders. The op*mal parameter is evaluated at 600
*me increments and plo]ed against *me over 2 cycles. When comparing the algorithm's performance to
other BayesOpt models, the periodic-forgeVng strategy proves to be more effec*ve in tracking the func*on's
minimum, as highlighted when comparing the average regret of the rou*ne using the three different methods.

Conclusion
The presented algorithm provides a flexible clinical framework for
s8mula8on parameter op8misa8on and has the capability of
con8nuously and autonomously calibra8ng DBS devices for
op8mal therapeu8c delivery. Furthermore, the algorithm is able
to determine and track the op8mal DBS control policy allowing
for effec8ve treatment of dynamic and periodic brain disorders.
By using con8nuous biofeedback, the control loop is never broken
thus ensuring op8mal symptom suppression and therapy. This not
only greatly improves the device longevity and performance but
also has the poten8al to dras8cally improve the quality of life of a
pa8ent. The algorithm's hyperparameters are all tunable and
op8misable to provide maximum symptom suppression. The
objec8ves ini8ally laid out have all been met and in most cases
exceeded through added func8onality and levels of robustness.
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Brain Disorders & Deep Brain S+mula+on

Many brain disorders can be 'treated' using DBS, which consists of a neuros*mulator that produces electrical
impulses and delivers them to specified areas of the brain using electrodes. However, there is s*ll a lack of
fundamental understanding of the mechanism of ac*on of DBS and the effects of the different s*m parameters.
S*m parameters can be varied to control to what extent neuronal elements surrounding the electrode are
recruited and ac*vated. However, it is not en*rely evident which regions of the surrounding area are being
s*mulated or blocked. As a result, unreliable past empirical and theore*cal results are the only guidance clinicians
have, leading to an ad hoc *me-consuming task. There is also no standardised universal parameter seVng for
implanted pa*ents, as each and every pa*ent needs to have a unique set of parameters. Overall, there are many
drawbacks to this empirical method of parameter selec*on, such as subop*mal seVngs and side effects.

Economic impact of brain disorders in Europe, 2010. [1] 

Many neurological disorders are degenera*ve
and require a strong interven*on and
persistent treatment, which in turn usually
imposes a significant monetary and social
burden for both the pa*ents and the
healthcare system. Neurological disorders are
at the forefront of research as major progress is
needed to provide more effec*ve treatment.
Furthermore, the treatment for brain disorders
are s*ll at a very primi*ve stage and end up
being costly due to the complexity of the
problem at hand. In 2010, in Europe alone,
brain disorders made up a total healthcare cost
of €800 billion and directly impacted almost a
quarter of Europeans [1].

[1] DiLuca, M., & Olesen, J. (2014). The cost of brain diseases: a burden or a challenge?. Neuron, 82(6), 1205-1208.

Parkinson’s Disease Study

aDBS combined β power and phase based s9m feedback policy. This decision 
tree diagram illustrates the key steps of the control process: the LFP signal is 

measured using an electrode sensor from which β power and phase are 
calculated using an ⍺Swic algorithm. S9mula9on is then only provided if both 

the power threshold and phase trigger (dashed red lines) criteria are met. 

a) Cumula9ve regret and b) convergence plots for different search strategies.

Surrogate model es9mates of the biomarker value as a func9on of 
aDBS parameters using 1D BayesOpt. Individual Bayesian parameter 
op9misa9on for β oscilla9on phase trigger, β power threshold, and 
s9mula9on amplitude. The black line represents the GP posterior 

mean, the green shaded region illustrates the 95% confidence interval. 
The points represent the 15 total samples made, where the colour 

indicates the itera9on number of the sample.

BGTCS model configura9on. Black arrows represent excitatory 
connec9ons, red arrows inhibitory ones. S9m is applied to the STN 
and the resul9ng LFP is measured from the GPi. Adapted from [2].

[2] van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocorQcal system. Journal of theoreQcal biology, 257(4), 642-663.

These parameters are op*mised one at a *me whilst the other two parameters are kept constant at their 'op*mal'
values. As illustrated, the algorithm is efficient at finding the minimum of the objec*ve func*on in very few itera*ons.
The algorithm starts off exploring the space before honing in and exploi*ng the minimum found. The samples do not
necessarily lay on the surrogate func*on as noise is included during sample procurement to ensure noise robustness
of the rou*ne, as samples will be inherently noisy when implemented clinically. Even when tes*ng the algorithm with
large amounts of noise, the op*miser is able to factor this in and consistently find the minimum point of the func*on.

Now that a robust op*misa*on program has been created, one might think how beneficial BayesOpt actually is in
comparison to simpler methods. Four different search strategies are compared in terms of convergence and regret
(f(x) - fmin) which are both good quan*ta*ve indicators of op*miser performance. The other three searches tested are:
random search; grid search, which generates a uniform grid from which points are tested; and Halton sequence,
which is a low-discrepancy point genera*on method. BayesOpt vastly outperforms the other methods as it has the
smallest total regret as well as the fastest convergence. This means op*mal therapy can be derived and delivered
faster leading to be]er treatment and an overall more produc*ve parameter selec*on rou*ne.

Parkinson's disease (PD) is a common DBS applica*on, PD symptoms manifest in a number of ways, including tremor, bradykinesia,
postural instability and rigidity. In study, the STN is chosen as the s*m target and LFP β-band (8-35 Hz) power measured from the
GPi is used as the biomarker with the goal of minimisa*on, as LFP β power is correlated with symptom severity. A computa*onal
model of a basal ganglia-thalamocor*cal system (BGTCS) made up of nine neuronal popula*ons is used in this study. As this is a
mean-field model where neuronal popula*ons are spa*ally averaged, values extracted from the popula*ons can be interpreted as
LFP signals and strongly resemble the measurements that can be sensed in prac*ce. As for the s*mula*on policy, a combined β
power and phase based strategy is used where the power and phase are extracted from the LFP measurement. In this approach,
s*mula*on is applied when the β power is above a set threshold, and is delivered in the form of phase-locked pulses when the
phase of the beta oscilla*on crosses a specified point. In this study, three parameters are op*mised: oscilla*on phase trigger,
power threshold and s*m amplitude. These free variables are op*mally found in an efficient automated manner using BayesOpt.
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