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• The UK has pledged to become carbon neutral by 2050, with  15% of the UK’s current 

total emissions coming from the power sector. This merits the  

investigation of quick, accurate design methods for renewable  

energy sources. 

• The monopile is the most common foundation for offshore wind  

turbines (OWT’s). It is a large diameter steel tube which is driven into 

the seabed, mobilising soil strength along its length and base.  

• The natural frequency of an OWT is an important design parameter. 

This is because it must lie in the narrow band between the rotational 

frequency and the blade passing frequency (generally 3 x rotational 

frequency, as there is typically 3 blades). 

• The monopile stiffness is a key parameter in the OWT’s natural  

frequency. It can be modelled as a set of coupled springs attached to 

the tower. The stiffness of these springs is known as the pile head 

stiffness matrix, found from the initial portion of the pile’s load dis-

placement curve at the ground level. Lateral and moment loading are considered. 

 

 

 

• The PISA project aimed to extend the p-y 

method commonly used in industry. The p-y 

method models the soil as a set of lateral  

non-linear Winkler springs characterised by soil 

reaction-displacement (p-y) curves, and the pile 

as an embedded Euler–Bernoulli beam. The  

PISA design method (Byrne et al. 2020; Burd et 

al. 2020a; Burd et al. 2020b) extends this by  

capturing other interaction effects relevant to 

large diameter monopiles. It includes a base 

horizontal  force (HB) and base moment (MB),  

as well as a distributed moment (m) arising 

from vertical shear tractions along the pile shaft 

opposing the direction of applied moments. The pile is  

modelled as a Timoshenko beam.   

• Monopile geometries were based on those used in the  

PISA project, which aimed to model monopiles of today and to-

morrow. Soil profiles used were also based on those modelled 

in the PISA project. 

• This project presented a method of predicting the stiffness of 

offshore wind turbines using artificial neural networks. The  

objectives of the method developed in this project were to  

produce more accurate stiffness predictions than the PISA 1D 

model, approaching the accuracy of three-dimensional finite 

element analysis (3D-FEA) with a faster predictive speed than 

3D-FEA. The 1D model prediction was used as an input feature. 

INTRODUCTION 

Figure 1– An OWT sup-

ported by a monopile 

(Kaynia 2019) 

Figure 3–  Problem 

space definition with 

the soil divided into 6 

randomly sized strata 

Figure 2– OWT with 

monopiles modelled as 

a set of coupled springs 

(Gupta 2018) 

Figure 4–  PISA 1D model 

(Burd et al. 2020a)  

METHOD 

• Training data was gathered by performing 3D-FEA in 

Abaqus on a range of monopile geometry/soil profile  

instantiations (samples). Soil profiles with a depth of 100m 

were split into 6 layers of random height. These layers 

were randomly assigned as coarse grained (sandy) or fine 

grained (clayey).  The shear modulus-depth relationship 

was defined based on modelling in the PISA project, and 

parameters were bundled into a parameter α. This was 

randomly selected for each layer for each sample. Soil was 

modelled as elastic, with perfect contact along the shaft. 

 

• Table 1 shows the monopile geometries modelled. CP1-9 

and TP1-4 were used to generate training data for the 

neural network, whilst VP1-2 were used as validation  

data for model selection, to ensure the neural network 

had generalised well to unseen geometries. Models were selected using this, as well 

as their performance on a 20% holdback set of the training data (the test set). UP1 

was used after model selection to ensure the network had truly generalised well to 

unseen geometries, and had not fit VP1 and VP2 well by chance. 1000 samples were 

generated for each of CP1-9 and TP1-4. 500 samples were generated for VP1-2, and 

150 samples were generated for UP1.  

• Feedforward neural networks (FNN’s) were created 

for each stiffness term. A feedforward neural network 

(FNN), also known as a multi layer perception is made 

up of interconnected nodes, in which information  

only flows forwards. A feature vector is entered into 

an input layer, with each neuron representing an  

input feature. There are 22 features for the net-

works, representing the monopile geometry, soil  

profile and 1D model prediction. Subsequently there 

are hidden layers, and finally an output layer. Each 

neuron feeds forward into every neuron in the layer after it, with each link being 

characterised by a weight. Each neuron has a bias which it applies to all inputs link-

ing into it. Weights and biases simply represent a linear transformation to the value 

of the neurons being fed forward. A non-linear activation function is typically applied 

before neurons in the hidden layer. This is required to introduce non-linearity to the 

model. 

• The networks were optimized with stochastic gradient descent, with Nesterov  

Accelerated Gradients. For KR the dataset was augmented with noise on the outputs, 

which introduced a regularizing effect. Hyperparameters were tuned using a grid 

based search. All networks have 3 hidden layers. KL has 20,10 and 10 neurons on its 

hidden layers. KLR has 50,50 and 10. KR has 5,10 and 50. 

Figure 5-  A mesh  for performing 

3D-FEA on a monopile embedded 

in soil. Only half the problem is 

discretised due to symmetry. 
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Table 1– Monopile geometries  

modelled 

Figure 6– Simple FNN with three input 

neurons, a two noded hidden layer and 

two outputs  
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• The FNN’s predicted the pile head stiffness matrix in 6.44x10-6 seconds. This is better than 

the 1D model (0.011 seconds) and the 3D-FEA (28.6 seconds), although a working model 

would have to include the 1D model’s prediction. 

Table 2–  Mean absolute percentage error, absolute percentage greater than 10% and 5% for the 

FNN’s compared to the 1D model. Results are averaged over the 20% holdback test set and the  

validation piles. 

DISCUSSION 

Figure 7– Kernel density estimations comparing percentage errors of 1D model to neural networks 

over the 3 stiffness terms.  Validation piles VP1, VP2 and UP1 respectively are shown.  

• This project presented an initial exploration into using artificial neural networks to predict 

the pile head stiffness matrix of monopiles used for OWT’s. 

• It fulfilled its objective of producing predictions close in accuracy to those made by  

3D-FEA, with a much smaller predictive time. This does not 

account for the time and user expertise required to set up 

the 3D-FEA model. Whilst the predictive speed of the 3D-FEA 

in this project was relatively low, this project demonstrates 

that it may be possible to expedite the problem with more 

complexities introduced (such as non-linear effects like  

friction, gapping and compliance). These would significantly  

increase the 3D-FEA solution time, whilst likely not  

significantly affecting the FNN’s predictive speed. 

• Figure 8 shows how FNN’s could expedite the design process, 

iterating through monopile dimensions to find dimensions 

which satisfy the target natural frequency.  It suggests all  

final dimensions are verified by techniques such as 3D-FEA.  
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Figure 8– Simplified design flowchart 

demonstrating  how methods devel-

oped in this report could aid design 

process of an OWT’s foundation 


